
Speculative Dereferencing: Reviving Foreshadow

Martin Schwarzl (@marv0x90), Thomas Schuster, Daniel Gruss, Michael Schwarz

1st of March, 2021

Graz University of Technology



Motivation www.tugraz.at

• Analysis of address-translation attack by Gruss et al. [Gru+16]

• The effect was attributed to the prefetch instruction

• Show that the actual root-cause is speculative execution in the

kernel

• This misattribution led to wrong conclusions in follow-up work

• We present stronger attacks like reviving Foreshadow

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Motivation www.tugraz.at

• Analysis of address-translation attack by Gruss et al. [Gru+16]

• The effect was attributed to the prefetch instruction

• Show that the actual root-cause is speculative execution in the

kernel

• This misattribution led to wrong conclusions in follow-up work

• We present stronger attacks like reviving Foreshadow

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Motivation www.tugraz.at

• Analysis of address-translation attack by Gruss et al. [Gru+16]

• The effect was attributed to the prefetch instruction

• Show that the actual root-cause is speculative execution in the

kernel

• This misattribution led to wrong conclusions in follow-up work

• We present stronger attacks like reviving Foreshadow

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Motivation www.tugraz.at

• Analysis of address-translation attack by Gruss et al. [Gru+16]

• The effect was attributed to the prefetch instruction

• Show that the actual root-cause is speculative execution in the

kernel

• This misattribution led to wrong conclusions in follow-up work

• We present stronger attacks like reviving Foreshadow

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Motivation www.tugraz.at

• Analysis of address-translation attack by Gruss et al. [Gru+16]

• The effect was attributed to the prefetch instruction

• Show that the actual root-cause is speculative execution in the

kernel

• This misattribution led to wrong conclusions in follow-up work

• We present stronger attacks like reviving Foreshadow

1 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

Cache miss

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

Cache miss
Request

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

maccess(i);

maccess(i);

Cache miss
Request

Response

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss
Request

Response

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



CPU Cache www.tugraz.at

i

maccess(i);

maccess(i);

Cache miss

Cache hit

Request

Response

DRAM access,

slow

No DRAM access,

much faster

2 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Flush+Reload www.tugraz.at

3 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Virtual memory per process www.tugraz.at

Physical memory
Non-canonical

Kernel

Direct-physical map

User space
0x0000 0000 0000 0000

0x0000 8000 0000 0000

0xffff 8880 0000 0000

0xffff 8000 0000 0000

4 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

• Fetch kernel addresses into the cache

• Using this technique virtual addresses can be translated into

physical addresses

• The KAISER patch should mitigate the address-translation

attack [Gru+17]

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

• Fetch kernel addresses into the cache

• Using this technique virtual addresses can be translated into

physical addresses

• The KAISER patch should mitigate the address-translation

attack [Gru+17]

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

• Fetch kernel addresses into the cache

• Using this technique virtual addresses can be translated into

physical addresses

• The KAISER patch should mitigate the address-translation

attack [Gru+17]

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

• Fetch kernel addresses into the cache

• Using this technique virtual addresses can be translated into

physical addresses

• The KAISER patch should mitigate the address-translation

attack [Gru+17]

5 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);

Flush

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);

Flush

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);

Flush

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);

Prefetch

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i);

Prefetch

6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Address-Translation Attack www.tugraz.at

i

i ≡ DPM-Address;

flush(i);

prefetch(DPM-Address);

sched yield();

maccess(i); C
ac

he
hi

t
6 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Reproduction www.tugraz.at

• We successfully reproduced the address-translation attack

• We only enable the page-table isolation and disabled all other

mitigations

• Still cache fetches occured...

7 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



The attack still works even with active Meltdown

mitigations?



Analysis I www.tugraz.at

• Root-cause was attributed to the prefetch

instruction [Gru+16]

• We disassembled the PoC and observed that the DPM-Address

is located in a register (r14)

• In addition the sched yield syscall is performed in the attack

• By enabling all mitigations against microarchitectural the

leakage disappears

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis I www.tugraz.at

• Root-cause was attributed to the prefetch

instruction [Gru+16]

• We disassembled the PoC and observed that the DPM-Address

is located in a register (r14)

• In addition the sched yield syscall is performed in the attack

• By enabling all mitigations against microarchitectural the

leakage disappears

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis I www.tugraz.at

• Root-cause was attributed to the prefetch

instruction [Gru+16]

• We disassembled the PoC and observed that the DPM-Address

is located in a register (r14)

• In addition the sched yield syscall is performed in the attack

• By enabling all mitigations against microarchitectural the

leakage disappears

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis I www.tugraz.at

• Root-cause was attributed to the prefetch

instruction [Gru+16]

• We disassembled the PoC and observed that the DPM-Address

is located in a register (r14)

• In addition the sched yield syscall is performed in the attack

• By enabling all mitigations against microarchitectural the

leakage disappears

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis I www.tugraz.at

• Root-cause was attributed to the prefetch

instruction [Gru+16]

• We disassembled the PoC and observed that the DPM-Address

is located in a register (r14)

• In addition the sched yield syscall is performed in the attack

• By enabling all mitigations against microarchitectural the

leakage disappears

8 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis II www.tugraz.at

• We NOPed out the prefetch instructions

• Cache fetches still occured → value in register is used

• Up to 60 cache fetches per second

• If the sched yield is removed, the leakage nearly disappears

• If full Spectre-V2 mitigations are applied, the leakage is

completely gone

9 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis II www.tugraz.at

• We NOPed out the prefetch instructions

• Cache fetches still occured → value in register is used

• Up to 60 cache fetches per second

• If the sched yield is removed, the leakage nearly disappears

• If full Spectre-V2 mitigations are applied, the leakage is

completely gone

9 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis II www.tugraz.at

• We NOPed out the prefetch instructions

• Cache fetches still occured → value in register is used

• Up to 60 cache fetches per second

• If the sched yield is removed, the leakage nearly disappears

• If full Spectre-V2 mitigations are applied, the leakage is

completely gone

9 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis II www.tugraz.at

• We NOPed out the prefetch instructions

• Cache fetches still occured → value in register is used

• Up to 60 cache fetches per second

• If the sched yield is removed, the leakage nearly disappears

• If full Spectre-V2 mitigations are applied, the leakage is

completely gone

9 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Analysis II www.tugraz.at

• We NOPed out the prefetch instructions

• Cache fetches still occured → value in register is used

• Up to 60 cache fetches per second

• If the sched yield is removed, the leakage nearly disappears

• If full Spectre-V2 mitigations are applied, the leakage is

completely gone

9 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative Execution www.tugraz.at

• CPU tries to predict the outcome of branches

• Predicted part gets executed speculatively

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative Execution www.tugraz.at

• CPU tries to predict the outcome of branches

• Predicted part gets executed speculatively

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative Execution www.tugraz.at

• CPU tries to predict the outcome of branches

• Predicted part gets executed speculatively

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative Execution www.tugraz.at

• CPU tries to predict the outcome of branches

• Predicted part gets executed speculatively

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative Execution www.tugraz.at

• CPU tries to predict the outcome of branches

• Predicted part gets executed speculatively

• If the prediction was correct, . . .

• . . . very fast

• otherwise: Discard results

10 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

cos(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

Speculate

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

cos(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

cos(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

Execute

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

cos(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

Speculate

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 0;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 1;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

Speculate

fun index = 1;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 1;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

Execute

fun index = 1;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

sin(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Spectre-BTB www.tugraz.at

fun index = 1;

math functions[fun index]();

float

(*math functions[2])(float)

= {sin,cos};

LUT[data[x] * 4096] 0

si
n(
x)

Prediction

cos(x)

cos(x)

11 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

• We debugged the kernel and found a Spectre-BTB gadget in

the kernel

• put prev task fair dereferences a user-controlled register

• There are multiple gadgets, for instance, also one triggered by

NVMe interrupts

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

• We debugged the kernel and found a Spectre-BTB gadget in

the kernel

• put prev task fair dereferences a user-controlled register

• There are multiple gadgets, for instance, also one triggered by

NVMe interrupts

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

• We debugged the kernel and found a Spectre-BTB gadget in

the kernel

• put prev task fair dereferences a user-controlled register

• There are multiple gadgets, for instance, also one triggered by

NVMe interrupts

12 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

cache line

rax
.
.
.

r15

Handler A Handler B

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

1. Fill registers

cache line

rax
.
.
.

r15

Handler A Handler B

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

1. Fill registers

2. Interrupt/Syscall

cache line

rax
.
.
.

r15

Handler A Handler B

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

1. Fill registers

2. Interrupt/Syscall

pre
dic

ted

cache line

rax
.
.
.

r15

Handler A Handler B

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative execution in the kernel www.tugraz.at

Kernel

indirect jmp

VA

DPM address

DPM address
DPM address
DPM address
DPM address

mov (%rdx), %rax

...

...

...

...

...

...

...

...

...

1. Fill registers

2. Interrupt/Syscall

3. Cache fetch

pre
dic

ted

cache line

rax
.
.
.

r15

Handler A Handler B

13 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



New attacks after understanding the correct root cause



Foreshadow www.tugraz.at

• Foreshadow or L1TF

• Leak data from L1 data cache

• Affects virtual machines (VM), hypervisors (VMM), operating

systems (OS) and system management mode (SMM)

• Read SGX-protected memory and leak machine’s private

attestation key

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow www.tugraz.at

• Foreshadow or L1TF

• Leak data from L1 data cache

• Affects virtual machines (VM), hypervisors (VMM), operating

systems (OS) and system management mode (SMM)

• Read SGX-protected memory and leak machine’s private

attestation key

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow www.tugraz.at

• Foreshadow or L1TF

• Leak data from L1 data cache

• Affects virtual machines (VM), hypervisors (VMM), operating

systems (OS) and system management mode (SMM)

• Read SGX-protected memory and leak machine’s private

attestation key

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow www.tugraz.at

• Foreshadow or L1TF

• Leak data from L1 data cache

• Affects virtual machines (VM), hypervisors (VMM), operating

systems (OS) and system management mode (SMM)

• Read SGX-protected memory and leak machine’s private

attestation key

14 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored PK X

• Present bit defines whether a page is present in physical memory.

15 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Present Bit www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

L1

Cache

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Present Bit www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present

L1

Cache

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Present Bit www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical

to Host Physical

L1

Cache

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Present Bit www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical

to Host Physical
Physical

Page

L1 lookup

with
physical address

L1

Cache

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Present Bit www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

not present

L1

Cache

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Present Bit www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

not present

L1 lookup

with

virtual address

L1

Cache

16 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

• Foreshadow:

• By modifying the PTE to a host-physical virtual address

• Suppressing the exception using TSX or exception handling

• Leaking the content of the data via Flush+Reload

• Foreshadow is already mitigated by performing L1 flushing

• Default setting for KVM is that L1 is conditionally flushed

• Speculative Dereferencing allows it to fetch data from L3 into

the cache (L1)

• Using the new insights Foreshadow is still possible on Linux

KVM

17 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

Virtual

machine
Hypervisor

Int./Hypercall with VA

Page

cache line

18 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

Virtual

machine
Hypervisor

Int./Hypercall with VA

Page

cache line

18 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

Virtual

machine
Hypervisor

Int./Hypercall with VA

Fetch into cachePage

cache line

18 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Foreshadow Revived www.tugraz.at

Virtual

machine
Hypervisor

Int./Hypercall with VA

Fetch into cacheForeshadow on PA Page

cache line

18 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security





Dereference Trap www.tugraz.at

• With Dereference Trap we want to leak the content of registers

from transient code paths

• We require a gadget which speculatively dereferences a register

within an SGX enclave

• The basic idea is to ensure that the entire virtual address space

of the victim application is mapped

• If a register containing a secret is speculatively dereferenced,

the corresponding virtual address is cached

• The attacker detects whether a certain address was cached or

not

19 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• With Dereference Trap we want to leak the content of registers

from transient code paths

• We require a gadget which speculatively dereferences a register

within an SGX enclave

• The basic idea is to ensure that the entire virtual address space

of the victim application is mapped

• If a register containing a secret is speculatively dereferenced,

the corresponding virtual address is cached

• The attacker detects whether a certain address was cached or

not

19 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• With Dereference Trap we want to leak the content of registers

from transient code paths

• We require a gadget which speculatively dereferences a register

within an SGX enclave

• The basic idea is to ensure that the entire virtual address space

of the victim application is mapped

• If a register containing a secret is speculatively dereferenced,

the corresponding virtual address is cached

• The attacker detects whether a certain address was cached or

not

19 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• With Dereference Trap we want to leak the content of registers

from transient code paths

• We require a gadget which speculatively dereferences a register

within an SGX enclave

• The basic idea is to ensure that the entire virtual address space

of the victim application is mapped

• If a register containing a secret is speculatively dereferenced,

the corresponding virtual address is cached

• The attacker detects whether a certain address was cached or

not

19 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• With Dereference Trap we want to leak the content of registers

from transient code paths

• We require a gadget which speculatively dereferences a register

within an SGX enclave

• The basic idea is to ensure that the entire virtual address space

of the victim application is mapped

• If a register containing a secret is speculatively dereferenced,

the corresponding virtual address is cached

• The attacker detects whether a certain address was cached or

not

19 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

• Leaking register values used in enclave(SGX)

• Speculative register dereferencing of memory values required

(jump tables, function pointers)

• Due to address space limit we perform binary search by

mapping the same 2 physical addresses to multiple locations

• Split 32-bit value range into two equal sized mappings

• One half maps physical page p1, the other page p2

• Verify which physical page was cached using Flush+Reload

• Repeat

20 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

Flush+Reload

Physical Page p1 Physical Page p2

v0 ... v n
2−1 v n

2
... vn−1

Register Value (between v0 and vn−1)

Dereference

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

Flush+Reload

Physical Page p1 Physical Page p2

v0 ... v n
2−1 v n

2
... vn−1

Register Value (between v0 and vn−1)

Dereference

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

Flush+Reload

Physical Page p1 Physical Page p2

v0 ... v n
2−1 v n

2
... vn−1

Register Value (between v0 and vn−1)

Dereference

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Dereference Trap www.tugraz.at

Flush+Reload

Physical Page p1 Physical Page p2

v0 ... v n
2−1 v n

2
... vn−1

Register Value (between v0 and vn−1)

Dereference

Test

21 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Register filling in JavaScript www.tugraz.at

• Can also be triggered in browsers

• Up to 20 cache fetches per second, if syscall would is directly

triggered

• On an unmodified browser 2 cache fetches per hour

• Using NVMe interrupts up to 1 cache fetch per minute

22 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Register filling in JavaScript www.tugraz.at

• Can also be triggered in browsers

• Up to 20 cache fetches per second, if syscall would is directly

triggered

• On an unmodified browser 2 cache fetches per hour

• Using NVMe interrupts up to 1 cache fetch per minute

22 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Register filling in JavaScript www.tugraz.at

• Can also be triggered in browsers

• Up to 20 cache fetches per second, if syscall would is directly

triggered

• On an unmodified browser 2 cache fetches per hour

• Using NVMe interrupts up to 1 cache fetch per minute

22 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Register filling in JavaScript www.tugraz.at

• Can also be triggered in browsers

• Up to 20 cache fetches per second, if syscall would is directly

triggered

• On an unmodified browser 2 cache fetches per hour

• Using NVMe interrupts up to 1 cache fetch per minute

22 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Mitigations www.tugraz.at

• KAISER [Gru+17] does not prevent the address-translation

attack

• EIBRS is also vulnerable (30 B/s on Ice Lake)

• → Full Spectre-BTB mitigations required

23 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Mitigations www.tugraz.at

• KAISER [Gru+17] does not prevent the address-translation

attack

• EIBRS is also vulnerable (30 B/s on Ice Lake)

• → Full Spectre-BTB mitigations required

23 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Mitigations www.tugraz.at

• KAISER [Gru+17] does not prevent the address-translation

attack

• EIBRS is also vulnerable (30 B/s on Ice Lake)

• → Full Spectre-BTB mitigations required

23 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Root cause of prefetch effect was wrong

• Real effect is speculative execution in the kernel

• Demonstrated that L1TF mitigations alone are not sufficient

• Showed a technique to leak values from registers within SGX

• Demonstrated that prefetching can also be triggered in browsers

24 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Root cause of prefetch effect was wrong

• Real effect is speculative execution in the kernel

• Demonstrated that L1TF mitigations alone are not sufficient

• Showed a technique to leak values from registers within SGX

• Demonstrated that prefetching can also be triggered in browsers

24 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Root cause of prefetch effect was wrong

• Real effect is speculative execution in the kernel

• Demonstrated that L1TF mitigations alone are not sufficient

• Showed a technique to leak values from registers within SGX

• Demonstrated that prefetching can also be triggered in browsers

24 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Root cause of prefetch effect was wrong

• Real effect is speculative execution in the kernel

• Demonstrated that L1TF mitigations alone are not sufficient

• Showed a technique to leak values from registers within SGX

• Demonstrated that prefetching can also be triggered in browsers

24 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Conclusion www.tugraz.at

• Root cause of prefetch effect was wrong

• Real effect is speculative execution in the kernel

• Demonstrated that L1TF mitigations alone are not sufficient

• Showed a technique to leak values from registers within SGX

• Demonstrated that prefetching can also be triggered in browsers

24 Schwarzl et. al — Graz University of Technology and Helmholtz Center for Information Security



Speculative Dereferencing: Reviving Foreshadow

Martin Schwarzl (@marv0x90), Thomas Schuster, Michael Schwarz, Daniel Gruss

1st of March, 2021

Graz University of Technology



References

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch Side-Channel

Attacks: Bypassing SMAP and Kernel ASLR. In: CCS. 2016.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard. KASLR is

Dead: Long Live KASLR. In: ESSoS. 2017.

25 M. Schwarzl (@marv0x90), T. Schuster, M. Schwarz, D. Gruss



Acknowledgments www.tugraz.at

We want to thank Moritz Lipp, Clementine Maurice, Anders Fogh, Xiao Yuan, Jo Van

Bulck, and Frank Piessens of the original papers for reviewing and providing feedback

to drafts of this work and for discussing the technical root cause with us. Furthermore,

we want to thank Intel and ARM for valuable feedback on an early draft. This project

has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation program (grant agreement No 681402).

Additional funding was provided by generous gifts from Cloudflare, Intel and Red Hat.

Any opinions, findings, and conclusions or recommendations expressed in this paper are

those of the authors and do not necessarily reflect the views of the funding parties.

26 M. Schwarzl (@marv0x90), T. Schuster, M. Schwarz, D. Gruss


	References

